Partial Synthesis of Vitamins D_2 and D_3 . **69**.

By H. H. INHOFFEN, K. IRMSCHER, H. HIRSCHFELD, U. STACHE, and A. KREUTZER.

Syntheses of epi-vitamins D_2 and D_3 have been effected on the lines used before for the natural series. Harrison and Lythgoe's synthesis of vitamin D₂ rested on an unsuspected partial resolution by chromatography and led them to some erroneous identifications.

AFTER preparation of 5: 6-trans-vitamins D_2 and D_3 and their photoisomerisation to the natural (5: 6-cis-) vitamins D_2 and D_3 ,¹⁻³ the remaining problem for partial synthesis of the natural vitamins was separation of the 3-hydroxy-epimers. For this we used the mixture ⁴ of the "dienolone" (I; $R = C_{9}H_{17}$) and its *epi*-isomer (II; $R = C_{9}H_{17}$), as well as the analogous mixture ⁵ (I + II; $R = C_8 H_{17}$). Chromatography yielded, without difficulty, the two pairs of pure epimers; as expected each mixture was found to contain its epimers in a 1:1 ratio.

The Wittig reaction, with methylenetriphenylphosphorane, converted the four hydroxyketones into the four pure triene-alcohols, namely, (III; $R = C_9 H_{17}$ and $C_8 H_{17}$) and the epi-forms (IV; $R = C_9 H_{17}$ and $C_8 H_{17}$).

Of these, the former pair (III) were identical with normal 5 : 6-trans-vitamin D_2 and D_3 respectively.^{3, 6, 7} Our photoisomerisation of this pair, by glass-filtered ultraviolet light, to the natural (5:6-cis-)vitamins D_2 and D_3 (V; $R = C_9H_{17}$ and C_8H_{17} respectively) has already been described.³ We have now similarly photoisomerised the pure epi-5: 6-transtrienes (IV; $R = C_9 H_{17}$ and $C_8 H_{17}$) to the (new) *epi*-vitamins D_2 and D_3 (VI; $R = C_9 H_{17}$ and C_8H_{17} respectively). These have not yet crystallised; moreover, their esters do not crystallise well and have unsharp melting points.

Harrison and Lythgoe⁸ have also reported a partial synthesis of vitamin D₂. They photoisomerised our "dienolone" epimer mixture (I + II; $R = C_0 H_{17}$), by our method, before introducing the methylene group by the Wittig procedure. Esterification of their mixed product gave the esters of natural (3β) -vitamin D_2 and $epi(3\alpha)$ -vitamin D_2 in a 1:3-ratio. However, in varying our procedure they chromatographed the dienolone *epimer* mixture (I + II): they discarded a fraction (15%) consisting of *epi(3a*)-rich dienolone

- Inhoffen, Kath, Sticherling, and Brückner, Annalen, 1957, 603, 25.
- ⁸ Inhoffen, Quinkert, Hess, and Hirschfeld, Chem. Ber., 1957, 90, 2544.
 ⁴ Inhoffen, Brückner, and Gründel, *ibid.*, 1954, 87, 1.
- ⁵ Inhoffen, Irmscher, Hirschfeld, Stache, and Kreutzer, *ibid.*, 1958, **91**, in the press.
- Inhoffen, Quinkert, Hess, and Erdmann, Chem. Ber., 1956, 89, 2273. 6
- Verloop, Koevoet, and Havinga, Rec. Trav. chim., 1955, 74, 1125.
- ⁸ Harrison and Lythgoe, Proc. Chem. Soc., 1957, 261; J., 1958, 837.

¹ Inhoffen, Kath, Sticherling, and Brückner, Angew. Chem., 1955, 67, 276; Inhoffen, Quinkert, Hess, and Hirschfeld, Naturwiss., 1957, 44, 11.

thus producing unwittingly a mixture rich in normal (β -)form and so eventually the unequal proportions of esters which they recorded. In fact the epimeric esters cannot be separated by crystallisation as described if the original 1:1 ratio of the mixture (I + II) is maintained. (In the strict sense Harrison and Lythgoe's synthesis is thus not reproducible.) Harrison and Lythgoe's so-called *epi*-vitamin D₂ is, further, a 1:1 epimeric mixture. Our earlier sample of *trans*-vitamin D₂² is, as stated, a mixture ($\alpha : \beta = 87 : 13$) and not "practically pure *epi*-vitamin D₂" as Harrison and Lythgoe believed.

EXPERIMENTAL

Rotations refer to benzene solutions unless otherwise stated. λ_{max} are for ether solutions. Light petroleum had b. p. 40–60°.

Separation of Dienolones.—(a) The dienolone epimer mixture ⁴ (I + II; R = C₉H₁₇) (2·9 g.) was chromatographed in 85 : 15 benzene-ether on alumina (580 g.; Woelm, neutral, grade 2). After rejection of two fractions (together 3·4 l.), fractions 3 and 4 (together 3 l.) yielded compound (I; R = C₉H₁₇), which after crystallisation from ether-light petroleum (yield, 0·71 g., 25%), had m. p. 142·5—144°, $[\alpha]_p$ 218°, λ_{max} 300 mµ (ε 25,200) (Found: C, 81·3; H, 10·4. Calc. for C₂₇H₄₂O₂: C, 81·4; H, 10·6%). After removal of intermediate fractions 5—8 (total 2 l.), fractions 9—23 (8 l.) afforded, after recrystallisation, the *epi*-form (0·69 g., 24%), m. p. 132—133·5°, $[\alpha]_p$ + 106°, λ_{max} 300 mµ (ε 26,200).

(b) Similarly, the mixture $(I + II; R = C_8H_{17})$ {4 g.; m. p. 143—143.5°, $[\alpha]_{\rm D} + 143^\circ$, $\lambda_{\rm max}$. 301 mµ (ϵ 26,800) (Found: C, 80.9; H, 10.8. Calc. for $C_{26}H_{42}O_2$: C, 80.8; H, 10.95%)}, gave the compound (I; $R = C_8H_{17}$) (1.45 g.), m. p. 141—141.5°, $[\alpha]_{\rm D} + 200^\circ$, and the *epi*-form (II; $R = C_8H_{17}$) (1.53 g.), m. p. 125—126°, $[\alpha]_{\rm D} + 88^\circ$.

Wittig Reactions.—The pure dienolone (I; $R = C_9 H_{17}$) (0.45 g.) and methylenetriphenylphosphorane (2.1 g.) in ether were boiled for 3 hr.; the product, isolated in the usual way, was chromatographed on alumina (45 g.) in 7:3 light petroleum—ether. The fraction with λ_{max} . 272—273 mµ crystallised from a similar solvent mixture, giving a triene (III; $R = C_9 H_{17}$) (0.2 g., 45%), m. p. 98:5—101°, [a]_p +216°, identical with 5: 6-trans-vitamin D₂.^{6,7}

Similarly, the epimeric dienolone (II; $R = C_9H_{17}$) (0.45 g.) gave the epi-triene (IV; $R = C_9H_{17}$) (0.19 g., 43%), m. p. 129.5—131.5°, $[\alpha]_D + 52.5°$, λ_{max} . 272—273° m μ (ϵ 24,500) (Found: C, 85.0; H, 10.4. $C_{28}H_{44}$ O requires C, 84.8; H. 11.2%).

Also, in the D₃ series, where $\mathbf{R} = \hat{\mathbf{C}}_{8}\mathbf{H}_{17}$, the dienolone (I)⁵ (0.45 g.) gave the triene (III) (0.16 g., 36%), m. p. 88—92°, $[\alpha]_{p}$ +212° (in ether), identical with 5 : 6-trans-vitamin D₃^{3,7}; and the *epi*-compound (II) (0.75 g.) gave the *epi*-triene (IV) (0.22 g.), m. p. 114—116°, $[\alpha]_{p}$ +47°, λ_{max} 272—273 mµ (ε 25,800).

Photoisomerisations.—Irradiation, effected as before,³ of the *epi*-triene (IV; $R = C_{g}H_{17}$) (0.94 g.) for 9 hr. and chromatography in 7 : 3 light petroleum-ether on alumina (150 g.) gave the (5 : 6-*cis*-)*epi*-vitamin D₂ (VI) as an oil (0.37 g.), λ_{max} . 265 mµ (ϵ 14,800), whose 3 : 5-dinitrobenzoate (0.22 g.) had m. p. 97—100°, $[\alpha]_{p} + 4^{\circ}$.

The *epi*-triene (IV; $R = C_8 H_{17}$) (0.4 g.), on irradiation for 8.5 hr. and chromatography (on alumina, 75 g.), gave an oily (5:6-*cis*-)*epi*-vitamin D_3 (VI) (0.19 g.), λ_{max} . 265 mµ (ε 14,000), whose 3:5-*dinitrobenzoate* (0.07 g.) had m. p. 96-100°, [α]_D -1° (Found: C, 70.5; H, 8.2; N, 4.9. $C_{34}H_{46}O_6N_2$ requires C, 70.6; H, 8.0; N, 4.8%).

ORGANISCH-CHEMISCHES INSTITUT DER TECHNISCHEN HOCHSCHULE, BRAUNSCHWEIG, GERMANY. [Received, September 16th, 1958.]